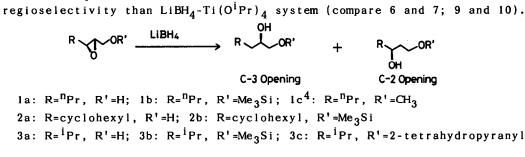
REGIOSELECTIVE REDUCTIVE OPENING OF 2,3-EPOXY ALCOHOL DERIVATIVES WITH LITHIUM BOROHYDRIDE IN A SOLID STATE


Keisuke Sugita, Makoto Onaka,^{*} and Yusuke Izumi^{*} Department of Synthetic Chemistry, School of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: 2,3-Epoxy alcohol derivatives were reduced regiospecifically with lithium borohydride in a solid state suspended in hexane to yield the corresponding C-3 opening products.

Regioselective ring opening of 2,3-epoxy alcohols with nucleophiles is an intriguing synthetic subject since optically pure 2,3-epoxy alcohols can be easily synthesized by Sharpless epoxidation process.¹ For ring opening with hydride, recently several groups have reported: Red-Al reduction of 2,3-epoxy alcohols yielded exclusively C-2 opening products,² while LiBH₄ reduction yielded exclusively C-3 opening products with the aid of titanium tetraisopropoxide.³ In this $Ti(O^{i}Pr)_{4}$ -LiBH₄ system, $Ti(O^{i}Pr)_{4}$ induces a regioselective attack of the hydride at C-3 by forming the chelate complex with 2,3-epoxy alcohol. In this communication, we would like to report regiospecific LiBH₄ reduction of 2,3-epoxy alcohol derivatives without the aid of $Ti(O^{i}Pr)_{4}$. The results are listed in Table 1.

Typical procedure: $LiBH_4$ (1.5 mmol) was added to a solution of 2,3epoxy alcohol derivative (0.5 mmol) in 5 ml hexane under argon atmosphere with stirring at room temperature. The reaction was quenched with aq. NH_4Cl , the organic products were extracted with ethyl acetate. The regioisomeric ratios of the products were determined by ¹H-NMR (200 MHz) and capillary GLC (PEG-HT, 25 m) after peracetylation of the product.

Interestingly, a suspended $LiBH_4$ in hexane reacted with 1a smoothly at room temperature to give C-3 opening product with higher regioselectivity than a perfectly dissolved $LiBH_4$ in THF (Runs 1, 2). We assumed that the $LiBH_4$ reduction of 2,3-epoxy alcohol might involve initial complexation of $LiBH_4$ with the hydroxyl group and followed by intramolecular hydride reduction, 2^{-a} so that high regioselectivity for C-3 opening could not be achieved. Converting 1a to epoxy silyl ether 1b, in order to prevent the above initial complexation of $LiBH_4$, improved the regioselectivity for C-3 opening (Run 3). Similarly, the other epoxy silyl ethers 2b and 3b reacted with $LiBH_4$ in hexane to give C-3 opening products with higher

Run	Substrate	Reagent	Solvent	Time/h	Yield/%	C-3	:	C-2
1	1a	LiBH ₄	THF	2	70	67	:	33
2	la	LiBH ₄	hexane	2	74	87	:	13
3	16	LiBH ₄	hexane	2	90	96	:	4
4	la	$LiBH_4$ -Ti $(O^iPr)_4^b$	benzene	2	80	98	:	2
5	2a	LiBH ₄	hexane	24	84	76	:	24
6	2b	LiBH ₄	hexane	24	82	99	:	1
7	2a	LiBH ₄ -Ti(O ⁱ Pr) ₄ ^{b)}	benzene	7	70	89	:	11
8	3a	LiBH ₄	hexane	6	62	79	:	21
9	3b	LiBH ₄	hexane	6	8 9	85	:	15
10	3c	LiBH ₄	hexane	96	85	88	:	12
11	3a	LiBH ₄ -Ti(0 ⁱ Pr) ₄ b)	benzene	4	75	69	:	31

Table 1. Reduction of 2,3-epoxy 1-ol derivatives^{a)}

a) Reactions were carried out at room temperature.

b) Epoxide (0.5 mmol), $Ti(O^{i}Pr)_{4}$ (0.75 mmol), $LiBH_{4}$ (1.5 mmol).

References and Notes

- 1. T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5974 (1980).
- a) J. M. Finan and Y. Kishi, Tetrahedron Lett., 23, 2719 (1982).
 b) S. M. Viti, ibid., 23, 4541 (1982).
- 3. L. -X. Dai, B. -L. Lou, Y. -Z. Zhang, and G. -Z. Guo, ibid., 27, 4343 (1986).
- 4. Stirring 1c in hexane with $LiBH_4$ for 2h gave C-3 and C-2 opening products in 95 : 5 regioselectivity and 80 % yield. Analysis of the MTPA ester⁵ derived from the above products indicated >90 %ee. Since optical purity of 1a was 92 %ee from analysis of the MTPA ester of 1a, the ring opening by $LiBH_4$ completely occurred in an S_N2 fashion.

5. J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 34, 2543 (1969).

(Received in Japan 17 September 1990)